wissen.de Artikel
Neuronale Netzwerke – Lernen am Beispiel Gehirn
Ob Sprachassistenten wie Alexa und Siri, lernfähige Roboter oder auch die computergestützte Datenauswertung in Wirtschaft, Medizin und Wissenschaft: Künstliche Intelligenz in Form lernfähiger Computersysteme sind aus vielen Bereichen nicht mehr wegzudenken. Viele dieser KI-Systeme arbeiten dabei nach Vorbild des menschlichen Gehirns – sie lernen durch komplexe Verschaltungen von künstlichen Neuronen.
Im Aufbau unserem Gehirn ähnlich
Auch wenn es einem manchmal so vorkommt, ist dies keineswegs eine neuartige Erfindung. Die Ideen für die ersten künstlichen neuronalen Netzwerke entstanden bereits in den 1940er Jahren, als Forschende versuchten zu verstehen, wie Nervenzellen im Gehirn funktionieren und diese mit elektrischen Schaltungen nachbauten. Heutzutage ist man dem Verständnis der Lernprozesse unseres Gehirns schon deutlich näher und auch die künstlichen neuronalen Netze haben sich weiterentwickelt.
Vom Gehirn weiß man, dass es lernt, indem es neue Verknüpfungen zwischen den Nervenzellen ausbildet. Wenn man beispielsweise eine Vokabel durch ständiges Wiederholen auswendig lernt, trägt dies zur Ausbildung neuer Nervenverzweigungen und zur Verstärkung bestimmter Verbindungen bei. Irgendwann müssen wir nicht mehr auf die Karteikarte schauen: Wir haben nämlich gelernt, was darauf steht.
Wie lernt ein neuronales Netzwerk?
Ein neuronales Netzwerk lernt auf eine ähnliche Weise: Anstatt aus Nervenzellen besteht dieses aus programmierten oder durch Hardware gebildeten Knoten, die miteinander verbunden sind. Aus den Verknüpfungen und Knoten entsteht ein komplexes, in mehrere Schichten gegliedertes Netzwerk. Am Anfang steht die Eingabeschicht, der sogenannte Input. Der ist zu vergleichen mit Reizen wie Licht, denen unser Gehirn ausgesetzt wird.
Die Reize für das neuronale Netzwerk sind hingegen bestimmte digitale Informationen, sogenannte Parameter. Sie entsprechen den Reizen, die das Netzwerk verarbeiten und beispielsweise kategorisieren soll. Das neuronale Netz wertet dafür den Input darauf aus, ob Daten einer bestimmten Kategorie enthalten sind – beispielweise Abbildungen eines Hunds.
Um diese erkennen zu können, muss das neuronale Netzwerk erst trainiert werden: Es bekommt hunderte bis tausende von Bildern gezeigt, die alle möglichen Tiere und Objekte zeigen. Alle Bilder mit Hund sind als solche markiert. Der Clou dabei: Das neuronale Netz lernt anhand dieser Beispielsbilder selbstständig, welche Merkmale einen Hund ausmachen. Ausgehend von diesem Lernerfolg kann es nun selbst Hunde auch auf neuen, noch unbekannten Bildern identifizieren.
Verknüpfungen zwischen Neuronen als Lernprozess
Dieser Lernvorgang gleicht beim neuronalen Netzwerk dem, der auch in unserem Gehirn beim Lernen abläuft. Verantwortlich dafür sind die Netzwerkschichten, die zwischen Input und Output liegen. Jede Zuordnung in der Trainingsphase entspricht einem bestimmten Weg des Signals durch dieses Netzwerk. Ist die Zuordnung richtig, wird diese Netzwerkverbindung verstärkt, ist sie hingegen falsch, wird sie abgewertet.
Am Anfang bei der Eingabe der Daten ist die Gewichtung der Pfade noch zufällig. Nach einem ersten Durchlauf hat das Neuronale Netzwerk einige Fehler gemacht – erste Pfade werden abgewertet. Mit vielen weiteren tausend Durchläufen wird die Gewichtung der Verknüpfung ausgeprägter – das Netzwerk lernt immer besser, die richtigen Entscheidungen zu treffen. Die Ergebnisse seiner Kategorisierung landen in der Output-Schicht und können von dort abgerufen werden.
In unserem Beispiel hat das neuronale Netzwerk durch dieses Training nun gelernt, wie ein Hund aussieht. Von jetzt an kann es diese Tierart selbstständig erkennen. Das Netzwerk hat nun eine, auf den Problemfall spezialisierte, künstliche Intelligenz entwickelt.
Künstliche Intelligenz unter menschlichem Einfluss
Doch diese Intelligenz ist nicht unabhängig von ihren Entwicklern. Denn die Eingabedaten, die das neuronale Netzwerk zum Training erhält, werden von Menschen zusammengestellt. Diese können durch die Auswahl dieser Daten, entweder absichtlich oder auch unterbewusst, eine bestimmte Sichtweise in den Lernprozess des Netzwerks mit einfließen lassen. So sollte beispielsweise der Chatbot "Tay" von Microsoft auf Twitter durch das Chatten mit anderen Nutzern lernen, Konversationen zu führen. Doch nach der Interaktion mit mehreren rassistischen Twitter-Usern fing er selbst an, rassistische Nachrichten zu twittern. Microsoft nahm die Software nach einigen Tagen wieder vom Netz.
Ein Dickicht aus Daten
Es gibt aber auch daten-basierte Probleme, die weniger mit der Qualität, sondern mehr mit der schieren Menge der Daten zu tun haben. Weil wir Menschen diese Menge nicht überblicken können, wissen wir oft nicht, wie genau ein künstliches neuronales Netzwerk die Daten analysiert. Anders ausgedrückt ist nicht genau bekannt, wie das Netzwerk in der verborgenen Schicht alle Neuronen miteinander verknüpft, also wie genau es lernt.
Der eigentliche "Denkprozess" solcher KI-Systeme ist vor uns versteckt, daher wird das Problem auch als "Black Box" bezeichnet. Denn ein neuronales Netzwerk verarbeitet Millionen von Daten, deren Möglichkeiten zur Kombination in astronomische Höhen schießen. Diese Komplexität können wir Menschen schlicht nicht auswerten, zumindest nicht in angemessener Zeit.
Neben den Unternehmen, die die Vielzahl von Anwendungen der neuronalen Netzwerke erweitern wollen, gibt es aber inzwischen auch welche, die sich zur Aufgabe gemacht haben, einen Blick in die Black Box zu werfen und die Algorithmen besser zu erklären. Denn mit der steigenden Anzahl an KI-Anwendungen steigt auch die Nachfrage nach mehr Transparenz in der Welt der künstlichen Intelligenz.